### 1/3=20/d

This encounters including, subtracting and also finding the leastern common multiple.

You are watching: What is 1/3 of 20

## Tip by Tip Solution ### Rearrange:

Rearrange the equation by subtracting what is to the ideal of the equal authorize from both sides of the equation : 1/3-(20/d)=0

## Tip 1 :

20 Simplify —— d Equation at the finish of action 1 : 1 20 — - —— = 0 3 d

## Tip 2 :

1 Simplify — 3Equation at the end of action 2 : 1 20 — - —— = 0 3 d

## Tip 3 :

Calculating the Least Typical Multiple :3.1 Find the Leastern Common Multiple The left denominator is : 3 The ideal denominator is : d

Number of times each prime factorappears in the factorization of:PrimeFactorLeftDenominatorRightDenominatorL.C.M = MaxLeft,Right
3101
Product of allPrime Factors313

Number of times each Algebraic Factorshows up in the factorization of:AlgebraicFactorLeftDenominatorRightDenominatorL.C.M = MaxLeft,Right
d011

Leastern Common Multiple: 3d

Calculating Multipliers :

3.2 Calculate multipliers for the 2 fractions Denote the Leastern Typical Multiple by L.C.M Denote the Left Multiplier by Left_M Denote the Right Multiplier by Right_M Denote the Left Deniminator by L_Deno Denote the Right Multiplier by R_DenoLeft_M=L.C.M/L_Deno=dRight_M=L.C.M/R_Deno=3

Making Equivalent Fractions :

3.3 Recompose the two fractions right into equivalent fractionsTwo fractions are called identical if they have actually the exact same numeric value. For example : 1/2 and 2/4 are indistinguishable, y/(y+1)2 and also (y2+y)/(y+1)3 are identical too. To calculate indistinguishable fractivity , multiply the Numerator of each fraction, by its particular Multiplier.

L. Mult. • L. Num. d —————————————————— = —— L.C.M 3d R. Mult. • R.

See more: Why Did My Package Go Farther Away Usps 2020? Why Did My Usps Package Go Farther Away

Num. 20 • 3 —————————————————— = —————— L.C.M 3d Adding fractions that have actually a common denominator :3.4 Adding up the 2 identical fractions Add the 2 tantamount fractions which now have a prevalent denominatorCombine the numerators together, put the sum or distinction over the prevalent denominator then alleviate to lowest terms if possible:

d - (20 • 3) d - 60 ———————————— = —————— 3d 3d Equation at the finish of action 3 : d - 60 —————— = 0 3d

## Step 4 :

When a fraction equates to zero :4.1 When a fraction equates to zero ...Where a portion equals zero, its numerator, the component which is over the fraction line, have to equal zero.Now,to eliminate the denominator, Tiger multiplys both sides of the equation by the denominator.Here"s how:

d-60 ———— • 3d = 0 • 3d 3d Now, on the left hand also side, the 3d cancels out the denominator, while, on the ideal hand also side, zero times anypoint is still zero.The equation currently takes the shape:d-60=0

Solving a Single Variable Equation:4.2Solve:d-60 = 0Add 60 to both sides of the equation:d = 60